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Synthesis and Dynamic Simulation of an Offset 

Slider-Crank Mechanism 
Julius Thaddaeus 

ABSTRACT  

Slider-crank mechanism plays a significant role in the mechanical manufacturing areas. The slider crank mechanism is a particular four-bar 

mechanism that exhibits both linear and rotational motion simultaneously. It is also called four-bar linkage configurations and the analysis of four bar 

linkage configuration is very important. In this paper four configurations are taken into account to synthesis, simulate and analyse the offset slider crank 

mechanism. Mathematical formulae are derived for determining the lengths of the crank and connecting rod; the kinematic and dynamic analyses of the 

positions, velocities and accelerations of the links of the offset slider crank and the forces acting on them leading to sparse matrix equation to be solved 

using MATLAB m-function derived from the analysis; the simulation of the model in Simulink and finally, the simulation results analysis. This program 

solves for all the unknown parameters and displays those results in graphical forms. 
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1. INTRODUCTION 

In many situations, mechanisms are required to 

perform repetitive operations such as pushing parts along 

an assembly line and folding cardboard boxes in an 

automated packaging machine. Besides the above, there are 

other applications like a shaper machine and 

punching/riveting press in which the working stroke is 

completed under load and must be executed slowly 

compared to the return stroke. This results in smaller work 

done per unit time. A quick return motion mechanism is 

useful in all such applications, [1].  

Quick return motion mechanisms are used on 

machines tools to give slow cutting stroke and a quick 

return stroke for a constant angular velocity of the driving 

crank and arc combinations of a simple linkages such as 

four-bar linkages and the slider crank mechanism. An 

inversion of the slider crank in combination with the 

conventional slider crank is also used. In the design of 

quick return mechanisms, the ratio of the crank angle for 

the cutting stroke to that for the return stroke is of prime 

importance and it’s known as the time ratio. To produce a 

quick return of the cutting tool, this ratio must obviously be 

greater than unity and as large as possible. A quick return 

motion mechanism is essentially a slider-crank mechanism 

in which the slider has different average velocities in 

forward and return strokes. Thus, even if the crank rotates 

uniformly, the slider completes one stroke quickly 

compared to the other stroke. An offset slider crank 

mechanism can be used conveniently to achieve the above 

objectives. 

Kinematics analysis of a mechanism is one of the 

important and challenging problems in the context of a 

mechanism designing, which should be carried out in order 

to evaluate different aspects of a mechanism, such as the 

instantaneous angle displacement, angle velocity and angle 

acceleration or the instantaneous displacement, velocity 

and acceleration etc. of each component of a mechanism. 

There are mainly two most common approaches to 

accomplish kinematics analysis of a mechanism, these 

include, graphical method and analytical method. 
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The major disadvantage of the former is that the precision 

of the solution is very low and the data obtained out of 

analysing could not be further exploited. Therefore, the 

latter based on mathematical deducing that could achieve 

high precision is often employed in practice. However, one 

point to note is analytical method based on mathematical 

deducing is quite difficult and time-consuming task owing 

to the fact that it would require one to perform very 

rigorous and complicated mathematical manipulation. 

Therefore, in order to overcome this disadvantage, a 

computation software are mostly employed to fasten the 

computing process. In this paper, the computation function 

of the computation software Matlab was employed and the 

simulation function of Matlab/Simulink simulation 

platform was exploited to accomplish kinematics 

simulation for the offset slider-crank mechanism.  

 As the kinematics and dynamics simulation 

analysis of a mechanism is quite difficult and challenging, 

the forward kinematics and dynamics simulation analysis 

has attracted much attention from many researchers during 

the past decade, much work has been reported for the 

simulation of mechanisms, such as, S. Dutta and T. K. 

Naskar [6], presented a new method to design an adjustable 

offset slider-crank mechanism to generate a function and a 

path simultaneously with the lengths of the input link and 

the link representing offset (henceforth called offset link) 

varying, without any limitation on the number of precision 

points; Jung-Fa Hsieh, [7], used a homogenous coordinate 

transformation method to develop a generic mathematical 

model of an offset slider-crank mechanism with a 

translating roller-follower. Given the fundamental design 

parameters, the proposed methodology not only 

determines the pressure angle and principal curvature of 

the slider cam, but also generates the NC data required for 

machining purposes; Shrikant R. Patel and D.S. Patel, [8], 

showed that the velocity ratio and force output changes 

with the change in height of slider. The ratio of length of 

slotter link to height of slider is 1.083 and at this instant the 

velocity ratio and force found to be with their maximum 

value during the stroke. 

This paper demonstrates the application of theory 

to mechanism synthesis and analysis; formulates a dynamic 

simulation model of an offset slider crank mechanism using 

MATLAB and SIMULINK software and finally, analyses 

and the simulation results. In addition, the method 

presented in this paper can interact design with other 

control module. Hence, it paves underlying theoretical 

grounds for the optimal designing of the complex 

mechanism in the future. 

2. MATHEMATICAL PROOF FOR THE CRANK AND CONNECTING 
ROD LENGTHS OF THE OFFSET SLIDER-CRANK 

 Fig.1 shows an offset slider-crank mechanism with 

AB as the crank length, BC as the connecting rod length, S 

as the stroke distance, h as the offset height, 𝛽𝛽 as the 

advanced stroke angle, 𝛼𝛼 as the return stroke angle, and 𝜃𝜃2 

as the crank angle. 

 

Figure 1. Offset Slider Crank Mechanism 
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The extreme right-hand position C’ of slider is obtained 

when the crank AB’ and connecting rod B’C’ of the slider 

add up to give the farthest possible position of the slider at 

a distance of (r+𝑙𝑙) from centre A. 

AC’ = (AB’) + (B’C’) = (r+𝑙𝑙)…….……………… (1) 

Distance: 

AC’ = (𝑙𝑙+r) 

AC” = (𝑙𝑙-r) 

Similarly the closest possible position of the slider C” is 

obtained when crank is at B” and the crank radius r is 

subtracts from the connecting rod length 𝑙𝑙 so that  

AC” = (B”C”) - (AB”) = (𝑙𝑙-r) …………………… (2)  

From right-angled triangles C”AM and C’AM remembering 

that ∠C”AC’ = c, we have  

Cos∠MAC” = 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴′′

 = ℎ
𝑙𝑙−r

 

Cos∠MAC’ = 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴′

 = ℎ
𝑙𝑙+r

 

Therefore,  

C = cos−1 � ℎ
𝑙𝑙+r
� - cos−1 � ℎ

𝑙𝑙−r
� 

Thus,  

Return stroke angle 𝛽𝛽 = (180-c) 

And Cutting stroke angle 𝛼𝛼 = (180+c) 

Hence, the ratio of advance to return stroke time is 

expressed mathematically as 

Q = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑜𝑜𝑜𝑜  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇  𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑜𝑜𝑜𝑜  𝑠𝑠𝑇𝑇𝑠𝑠𝑟𝑟𝑠𝑠𝑎𝑎  𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑇𝑇

………………..……… (3) 

When Q is greater than one, the mechanism is calledQuick-

return Mechanism 

 Assuming the driving motor rotates at constant 

rpm N, the time of advance stroke and return stroke can be 

obtained as: 

Time of advance stroke = 𝛼𝛼
2𝜋𝜋𝜋𝜋

 

Time of return stroke = 𝛽𝛽
2𝜋𝜋𝜋𝜋

 

 

 

Figure 2. Triangle showing the two extreme positions of the slider 

block 

 

From ∆AC’C” in fig.2, Using Sine Rule:   

      

𝐴𝐴𝐴𝐴+𝐴𝐴𝐴𝐴
𝑆𝑆𝑇𝑇𝑎𝑎  𝑏𝑏

= 𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴
𝑆𝑆𝑇𝑇𝑎𝑎  𝑏𝑏

 = 𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

 

   

𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴
𝑆𝑆𝑇𝑇𝑎𝑎  𝑏𝑏

 = 𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

             And Sin b = ℎ
 𝐴𝐴𝐴𝐴+ 𝐴𝐴𝐴𝐴

  from ∆BCD 

 

𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴
ℎ

 𝐴𝐴+ 𝐴𝐴𝐴𝐴
  = 𝑆𝑆

𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎
 ,  

 

𝐴𝐴𝐴𝐴2− 𝐴𝐴𝐴𝐴2

ℎ
 = 𝑆𝑆

𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎
  Therefore, BC2 = ℎ𝑆𝑆

𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎
  + AB2  
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Using Cosine Rule for ∆ABC: 

S2 = (AB + BC) 2 + (BC – AB) 2 – 2(AB + BC) (BC – AB) Cosc 

   = (AB + BC) 2 + (BC – AB) 2 – 2(BC2 – AB2) Cosc 

   = 2AB2 + 2AB2Cosc + 2BC2 – 2BC2Cosc 

   = 2AB2 (1 + Cosc) + 2BC2 (1 – Cosc)  

𝑆𝑆2

2
 = AB2 (1 + Cosc) + BC2 (1 – Cosc) 

     = AB2 (1 + Cosc) +   ℎ𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

  + AB2(1 – Cosc) 

     = AB2 (1 + Cosc) + AB2 (1 + Cosc) +  ℎ𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

(1 – Cosc) 

    = 2AB2 + ℎ𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

(1 – Cosc) 

AB2 = 𝑆𝑆
2

4
 -  ℎ𝑆𝑆

2𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎
(1 – Cosc) 

Therefore, 

𝐴𝐴𝐴𝐴�����⃗  = ��𝑆𝑆
2

4
−  ℎ𝑆𝑆

2
 𝑠𝑠𝑎𝑎𝑎𝑎 𝑎𝑎

2
��

1/2
 From trigonometry function. 

Knowing that: 

BC2 = ℎ𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

  + AB2   

Now, substituting for AB2, We have: 

BC2 = ℎ𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

  + 𝑆𝑆
2

4
 -  ℎ𝑆𝑆

2𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎
(1 – Cosc) 

 

  = ℎ𝑆𝑆
𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

  - ℎ𝑆𝑆
2𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎

(1 – Cosc) + 𝑆𝑆
2

4
 

 

    = 𝑆𝑆
2

4
 +  ℎ𝑆𝑆

2
 (1 + 𝐴𝐴𝑜𝑜𝑠𝑠  𝑎𝑎

𝑆𝑆𝑇𝑇𝑎𝑎  𝑎𝑎
 )   

 

     = 𝑆𝑆
2

4
+  ℎ𝑆𝑆

2
1

𝑠𝑠𝑎𝑎𝑎𝑎 𝑎𝑎2
 , from trigonometry function. 

Therefore, 

𝐴𝐴𝐴𝐴�����⃗  = ��𝑆𝑆
2

4
+  ℎ𝑆𝑆

2𝑠𝑠𝑎𝑎𝑎𝑎 𝑎𝑎2

��
1/2

 

 

Hence, the length of Crank 

𝐴𝐴𝐴𝐴�����⃗  = ��𝑆𝑆
2

4
−  ℎ𝑆𝑆

2
 𝑠𝑠𝑎𝑎𝑎𝑎 𝑎𝑎

2
��

1/2
 

 

The length of the Connecting rod 

𝐴𝐴𝐴𝐴�����⃗  = ��𝑆𝑆
2

4
+  ℎ𝑆𝑆

2𝑠𝑠𝑎𝑎𝑎𝑎 𝑎𝑎2

��
1/2

 

3. THE KINEMATIC AND DYAMIC ANALYSIS LEADING TO THE 
SPARSE MATRIX EQUATION. 

3.1 Vector Loop Equations 
3.1.1. Position equations: 

 
Figure 3. Vector Loop Schematic of the Offset 

Slider Crank 

The schematic of a slider-crank mechanism with 

one degree-of-freedom is shown in Fig. 3, it is composed of 

four component parts, i.e., Ground 𝑅𝑅1, Crank 𝑅𝑅2, 

Connecting rod 𝑅𝑅3, Offset height 𝑅𝑅4 and 

Slider C. In order to research the kinematics and dynamics 

of the slider-crank mechanism, a fixed reference frame A-

BM is attached to crank 𝑅𝑅2 of the mechanism, as shown in 

Fig. 3, where origin A is the starting point of crank𝑅𝑅2. The 

geometric parameters of the mechanism can be described as 

follows: 
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The link-length of crank 𝑅𝑅2 is𝐴𝐴𝐴𝐴�����⃗  while 𝐴𝐴𝐴𝐴�����⃗  for connecting 

rod 𝑅𝑅3 link-length, 𝑅𝑅1represents the position of slider C in 

the fixed frame, 𝜃𝜃2 is the active input-angle, 𝜃𝜃3 is the 

passive output-angle and finally, 𝐴𝐴𝐴𝐴������⃗  is for the offset 𝑅𝑅4.  

With the above-mentioned notations and with 

reference to Fig.3, the following closed-loop vector equation 

of the offset slider-crank mechanism describing the 

relationship between the input and the output vectors can 

be expressed as below: 

𝑅𝑅2 + 𝑅𝑅3 - 𝑅𝑅1 - 𝑅𝑅4 = 0 

𝑅𝑅2 + 𝑅𝑅3= 𝑅𝑅1+𝑅𝑅4 ………………………………. (4) 

𝑠𝑠2 sin𝜃𝜃2 + 𝑠𝑠3 sin 𝜃𝜃3 - 𝑠𝑠1 sin 0𝑜𝑜  - hsin 90𝑜𝑜= 0 

𝑠𝑠2 cos𝜃𝜃2 + 𝑠𝑠3 cos 𝜃𝜃3 - 𝑠𝑠1 cos 0𝑜𝑜  - 𝑠𝑠1 cos 90𝑜𝑜= 0 

Therefore, the position equations are: 

𝑠𝑠2 sin𝜃𝜃2 + 𝑠𝑠3 sin 𝜃𝜃3 – h = 0 ………………….. (5) 

𝑠𝑠2 cos𝜃𝜃2 + 𝑠𝑠3 cos 𝜃𝜃3 - 𝑠𝑠1 =0 ..………………... (6) 

3.1.2. Velocity Equations: 
The velocity equations are obtained by differentiating the 

position equations: 

𝑎𝑎𝜃𝜃
𝑎𝑎𝑠𝑠

 = 𝜔𝜔 

Note, from derivatives of trigonometry functions: 

𝑎𝑎 sin 𝜃𝜃
𝑎𝑎𝑠𝑠

 = cos𝜃𝜃 

𝑎𝑎 cos 𝜃𝜃
𝑎𝑎𝑠𝑠

 = - sin 𝜃𝜃 

Therefore, the velocity equations are given as: 

−𝜔𝜔2𝑠𝑠2 sin 𝜃𝜃2 - 𝜔𝜔3𝑠𝑠3 sin 𝜃𝜃3= �̇�𝑠1 ……………… (7) 

𝜔𝜔2𝑠𝑠2 cos𝜃𝜃2 - 𝜔𝜔3𝑠𝑠3 cos 𝜃𝜃3= 0………….……… (8) 

Equations (7) and (8) combined to form a system of three 

equations with two unknowns as shown below: 

�1 𝑠𝑠3 sin 𝜃𝜃3
0 −𝑠𝑠3 cos𝜃𝜃3

� � �̇�𝑠1
𝜔𝜔3
� = �−𝜔𝜔2𝑠𝑠2 sin𝜃𝜃2

𝜔𝜔2𝑠𝑠2 cos𝜃𝜃2
� 

3.1.3. Acceleration Equations: 

 We take the second derivatives of the position 

equations to obtain our acceleration equations. 

−𝛼𝛼2𝑠𝑠2 sin 𝜃𝜃2 − 𝑠𝑠2𝜔𝜔2
2 cos 𝜃𝜃2 − 𝛼𝛼3𝑠𝑠3 sin 𝜃𝜃3 − 𝑠𝑠3𝜔𝜔3

2 cos𝜃𝜃3 = �̈�𝑠1…. 

(9) 

𝛼𝛼2𝑠𝑠2 cos𝜃𝜃2 − 𝑠𝑠2𝜔𝜔2
2 sin𝜃𝜃2 + 𝛼𝛼3𝑠𝑠3 cos𝜃𝜃3 − 𝑠𝑠3𝜔𝜔3

2 sin 𝜃𝜃3= 0 …….. 

(10) 

Equations (9) and (10) also combined to form a system of 

three equations with two unknowns. 

�1 𝑠𝑠3 sin 𝜃𝜃3
0 −𝑠𝑠3 cos𝜃𝜃3

� � �̈�𝑠1
𝛼𝛼3
� = 

�−𝛼𝛼2𝑠𝑠2 sin 𝜃𝜃2 −𝑠𝑠2𝜔𝜔2
2 cos 𝜃𝜃2 −𝑠𝑠3𝜔𝜔3

2 sin 𝜃𝜃3
𝛼𝛼2𝑠𝑠2 cos𝜃𝜃2 𝑠𝑠2𝜔𝜔2

2 sin 𝜃𝜃2 −𝑠𝑠3𝜔𝜔3
2 cos𝜃𝜃3

� 

We proceed with the analysis, starting with the free-body 

diagram of each individual link. 

 

Figure 4. The Schematic diagram of the Offset Slider Crank 

Figure shows a schematic diagram of the offset 

slider crank with torque,𝜏𝜏12  applied to the crank, link 2 is 

the crank, link 3 is the connecting rod and link 4 is the 

slider block C which is free of all external loads. Now, by 
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applying Newton’s law of motion to each link aided by 

free-body diagrams to figure 4, we can obtain our forces 

equations. 

Applying equations of motion to link 2 gives: 

 

Figure 5. Free-body diagram of link 2. 

𝐹𝐹12,𝑥𝑥  + 𝐹𝐹32,𝑥𝑥  = 0 ………………………………. (11) 

𝐹𝐹12,𝑦𝑦  + 𝐹𝐹32,𝑦𝑦  = 0 ………………………………. (12) 

−𝐹𝐹12,𝑥𝑥𝑠𝑠2 sin 𝜃𝜃2+ 𝐹𝐹32,𝑥𝑥 cos𝜃𝜃2 + 𝜏𝜏12  = 0 .………. (13) 

 For link 3, the free-body diagram leads directly to 

the equations as shown below: 

 

Figure 6. Free-body diagram of Link 3 

𝐹𝐹32,𝑥𝑥  + 𝐹𝐹43,𝑥𝑥  = 𝐴𝐴3𝐴𝐴𝐴𝐴3,𝑥𝑥……………….……… (14) 

𝐹𝐹32,𝑦𝑦  + 𝐹𝐹43,𝑦𝑦  = 𝐴𝐴3𝐴𝐴𝐴𝐴3,𝑦𝑦……………………… (15) 

−𝐹𝐹43,𝑥𝑥(𝑠𝑠3 − 𝑠𝑠𝑎𝑎3) sin 𝜃𝜃3+ 𝐹𝐹43,𝑥𝑥(𝑠𝑠3 − 𝑠𝑠𝑎𝑎3) cos𝜃𝜃3 − 𝐹𝐹32,𝑥𝑥𝑠𝑠𝐴𝐴3 cos 𝜃𝜃3 + 

𝐹𝐹32,𝑥𝑥𝑠𝑠𝐴𝐴3 sin 𝜃𝜃3 =𝐼𝐼3𝛼𝛼3..………………………. (16) 

 Applying equations of motion to link 4: 

 

Figure 7. Free-body diagram of link 4 

Link 4 is free of all external loads and analysis considers 

frictionless interface between the link 4 and the fixed link, 

hence, only one equation is obtained. 

𝐹𝐹43,𝑦𝑦  + 𝐹𝐹14,𝑦𝑦  = 0 …………………………………….. (17) 

Therefore, the following forces are unknown: 

�𝐹𝐹12,𝑥𝑥𝐹𝐹12,𝑦𝑦𝐹𝐹32,𝑥𝑥  𝐹𝐹32,𝑦𝑦𝐹𝐹43,𝑥𝑥𝐹𝐹43,𝑦𝑦𝐹𝐹14,𝑦𝑦𝜏𝜏12� 

3.2. Centre of Mass (COM) Accelerations: 

 Since, the centre of mass (COM) of the crank AB is 

on the rotational axis through A, it is considered stationary 

and all its accelerations are zeros.  

Therefore, the centre of mass accelerations for link 3 are: 

𝐴𝐴𝐴𝐴3,𝑥𝑥  = −𝛼𝛼2𝑠𝑠2 Sin 𝜃𝜃2 − 𝑠𝑠2𝜔𝜔2
2 Cos𝜃𝜃2 − 𝛼𝛼3𝑠𝑠𝐴𝐴3 Sin 𝜃𝜃3 − 𝑠𝑠𝐴𝐴3𝜔𝜔3

2 Cos 𝜃𝜃3 

…. (18) 

𝐴𝐴𝐴𝐴3,𝑦𝑦  = 𝛼𝛼2𝑠𝑠2 Cos 𝜃𝜃2 − 𝑠𝑠2𝜔𝜔2
2 Sin 𝜃𝜃2 + 𝛼𝛼3𝑠𝑠𝐴𝐴3 Cos𝜃𝜃3 − 𝑠𝑠𝐴𝐴3𝜔𝜔3

2 Sin 𝜃𝜃3 

……. (19) 

Hence, the following accelerations are introduced:  

 �𝐴𝐴𝐴𝐴3,𝑥𝑥𝐴𝐴𝐴𝐴3,𝑦𝑦 �̈�𝑠1𝛼𝛼3� 
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Equations (7) through (19) create a system of twelve linear 

equations that form the sparse matrix below: 

 

Where: 𝐴𝐴3=Mass of connecting rod, 𝐴𝐴4=Mass of slider 

block, 𝑠𝑠2=Crank length, 𝑠𝑠3=Connecting rod length, 

𝑠𝑠𝐴𝐴3=Position of COM of connecting rod, 𝑆𝑆2=Sin 𝜃𝜃2, 𝐴𝐴2=Cos𝜃𝜃2, 

𝑆𝑆3=Sin 𝜃𝜃3, 𝐴𝐴3=Cos 𝜃𝜃3, 𝐼𝐼3=Mass moment of inertia of 

connecting rod about COM, 𝐴𝐴𝐴𝐴3,𝑥𝑥/𝑦𝑦=COM acceleration of 

connecting rod, 𝛼𝛼3=Angular acceleration of the connecting 

rod, 𝜏𝜏12=Torque on Crank, and �̈�𝑠1=Acceleration of link 1. 

4.0 METHODOLOGY 

This paper demonstrates using MATLAB and 

SIMULINK, a simulation model for the synthesised offset 

slider-crank mechanism.  

The model simulation would include the following scopes 

displayed:  

1. The reaction force magnitude/ time graph at pivots A, B 

and C and the normal reaction force/time exerted on slider- 

block C from the guide way;  

2. The displacement/time graph of slider-block C; and 

3. The torque/time graph of driving torque on crank AB;  

 The offset slider-crank mechanism model has the 

following specifications:  

1. Stroke length of slider block C = 80 mm  

2. Advance-to-return time ratio = 1.1  

3. Offset height h = 20 mm.  

Also, suppose that:  

1. Crank AB has a mass of 0.2 kg and a moment of inertia of 

100 kg.mm2 about a rotational axis through its centre of 

mass;  

2. Connecting rod BC has a mass of 0.5 kg and a moment of 

inertia of 1200 kg.mm2 about a rotational axis through its 

centre of mass;  

3. The centre of mass of connecting rod BC is located half 

way between the two pivots, B and C;  

4. The centre of mass of crank AB is on the rotational axis 

through A;  

5. Slider block C has a mass of 0.8 kg;  

6. Friction at the interfaces and weights of all links are 

negligible compared to the dynamic forces;  

7. Slider-block C is free of all external loads;  

8. The starting position of crank AB is θ = 0o; and  

9. Crank AB is driven at a uniform rotating speed of 2400 

rev/min anticlockwise.  

4.1 The MATLAB m-function 

functionxout=slrcrndy1(u) 

% 

% function [xout]=slrcrndyn1(u) 

% function to implement the full dynamic simulation 

% of a slider crank 

% u(1) = Theta-2 

% u(2) = Theta-3 

% u(3) = r-1 

% u(4) = Omega-2 

% u(5) = Omega-3 

% u(6) = r-1-dot 

% u(7) = F-ext 

% Define local variables 

r1 = u(3); 

r2 = 0.15; % crank length in metres 

r3 = 0.35; % connecting rod length in metres 
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rc2 = 0.0; % COM at pivot, implying a balanced crank 

rc3 = r3/3; % COM is 1/3 of the distance from the pivot with 

the crank 

C2 = cos(u(1)); S2 = sin(u(1)); 

C3 = cos(u(2)); S3 = sin(u(2)); 

w2 = u(4); w3 = u(5); 

Fext = u(7); 

% Define inertial parameters 

M2 = 1; % mass of crank in kg 

M3 = 0.2; % mass of connecting rod in kg 

M4 = 0.3; % mass of slider in kg 

I3 = 0.01; % mass moment of inertia of connecting rod about 

COM in kg.m^2 

% 

a = zeros(14); 

b = zeros(14,1); 

a(1,1)=1; a(1,3)=1; a(1,11)=-M2; 

a(2,2)=1; a(2,4)=1; a(2,12)=-M2; 

a(3,3)=-r2*S2; a(3,4)=r2*C2; a(3,8)=1; 

a(4,3)=-1; a(4,5)=1; a(4,13)=-M3; 

a(5,4)=-1; a(5,6)=1; a(5,14)=-M3; 

a(6,3)=-rc3*S3; a(6,4)=rc3*C3; a(6,5)=(rc3-r3)*S3; a(6,6)=(r3-

rc3)*C3; a(6,10)=-I3; 

a(7,5)=1; a(7,9)=M4; 

a(8,6)=-1; a(8,7)=1; 

a(9,9)=1; a(9,10)=r3*S3; 

a(10,10)=-r3*C3; 

a(11,11)=1; 

a(12,12)=1; 

a(13,10)=rc3*S3; a(13,13)=1; 

a(14,10)=-rc3*C3; a(14,14)=1; 

% 

b(7)=Fext; 

b(9)=-r2*C2*w2^2-r3*C3*w3^2; 

b(10)=-r2*S2*w2^2-r3*S3*w3^2; 

b(11)=-rc2*C2*w2^2; 

b(12)=-rc2*S2*w2^2; 

b(13)=-r2*C2*w2^2-rc3*C3*w3^2; 

b(14)=-r2*S2*w2^2-rc3*S3*w3^2; 

% 

% Solve the equation 

x=inv(a)*b; 

% 

% Compute consistency error 

error = norm([r1-r2*C2-r3*C3, r2*S2+r3*S3]); 

% 

% Set up output vector 

xout(1)=x(10); % Alpha-3 

xout(2)=x(9); % r1-double-dot 

xout(3)= x(8); % Torque 

xout(4)=x(1); % F12x 

xout(5)=x(2); % F12y 

xout(6)=x(3); % F32x 

xout(7)=x(4); % F32y 

xout(8)=x(5); % F43x 

xout(9)=x(6); % F43y 

xout(10)=x(7); % F14y 

xout(11)=error; % Consistency error 

 

4.2 The Simulation Model 

Figure 8 below shows the Offset Slider Crank 

simulation model: 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016                                                                                            1850 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

Figure 8. Full Dynamic Simulation of Offset Slider Crank 

 The Simulink model has the crank as the input link 

which turns at a constant rate of 2400rpm (251rad/sec) 

providing a torque to the whole mechanism. 

The mechanism model has five (5) integrators: One to 

integrate the crank speed, 𝜔𝜔2 to crank angle,𝜃𝜃2; two more to 

integrate the accelerations, 𝜃𝜃3 and �̈�𝑠1, and finally, two more 

to integrate the resulting velocities to displacements. The 

sparse matrix is solved using m-function which takes all the 

integrator outputs as arguments. The function computes 

the accelerations and forces shown in the resulting output 

graphs and performs consistency check to ensure that the 

formulation is error-free and that the integration routines 

are maintaining adequate accuracy. 

 The initial conditions set for the simulation are 

given in table1 below and the simulation time was 0.0682 

seconds. Results displayed are: the reaction force 

magnitude-time graph at pivots A, B and C and the normal 

reaction force-time graph exerted on the slider block c from 

guide way; the displacement-time graph of the slider block 

c; the torque-time graph and finally, the coupler curve of 

the mass of connecting rod. 

4.3. Initial conditions set for each integrator in the model  

 The initial conditions are determine using 

MATLAB function called the comvel.m. 

function x=compvel(u) 

% function to compute the slider velocity 

% and the angular velocity of the connecting rod 

% given the angular crank velocity as input 

% 

r2=0.15; 

r3=0.35; 

% 

w2=u(1); 

theta2=u(2); 

theta3=u(3); 

% 

a=[1 r3*sin(theta3); 0 -r3*cos(theta3)]; 

b=[-w2*r2*sin(theta2); w2*r2*cos(theta2)]; 

x=inv(a)*b; 

end 

Table 1 shows the five initial conditions that were used for 

the simulation. 

Table 1. Initial Conditions for the Offset Slider-crank Mechanism 

Variable Initial 
condition 

𝜃𝜃2 0 rad 

𝜃𝜃3 0.18117rad 

𝜔𝜔2 251.3274 
rad/s 

𝜔𝜔3 -89.6565 
rad/s 

�̇�𝑠1 1.7931 m/s 

 

Figure 9 through 14 display plots from the simulation 

results. 
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4.4 Simulation Results 
 

 

Figure 9. Slider Pin Reaction force graph 

 

Figure 10. Slider Block Displacement/Time graph 

 

 

Figure 11. Crank Pin Reaction force graph 

 

Figure 12. Grid Reaction force graph 

 

Figure 13. Driving torque on Crank Torque/Time 
graph 

 

Figure 14. Guide way Normal Reaction Force/Time 
graph 

5.0. CONCLUSION 

 In this simulation, simultaneous constraint method 

is employed. Equations derived from the kinematic and 

dynamic analyses are assembled into a system of twelve 

linear equations to obtain the sparse matrix. This is solved 
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by the m-file function in the simulation process and the 

simulation results displayed in form of graphs. 
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